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Abstract: In this paper, we have studied the synchronization on time scale and given two theorems 
to illustrate the phenomenon. Furthermore, corresponding examples are presented based on the 
results. Numerical simulations show their feasibility. From a theoretical perspective, such a 
synchronization strengthen the security of communication, which could be considered as a good 
method for designing a more secure communication scheme in practical engineering applications. 

1. Introduction

Recently, the phenomenon of synchronization in stochastic systems has attracted much interest
(see for example [1-5]). Meanwhile, chaos synchronization is deemed to have a great potential in a 
large amount of application, arranging from secure communication to brain activity, even to 
optimization of nonlinear system performance. 

 As well known, both continuous and discrete systems are also important in implementing and 
applications. But it is troublesome to study the stability for continuous and discrete systems, 
respectively. Therefore, it is meaningful to study that on time scale which can unify the continuous 
and discrete situations [6-16]. To the best of our knowledge, the synchronization on time scale has 
not been studied. In this paper, we study it by using the time scale calculus theory and Lyapunov 
stability theory. 
     The rest of the paper is organized as follows: In section 2, some basic notions and some results 
are collected; In section 3, the synchronization on time scale is discussed.  

2. Preliminaries

In this section, we briefly recall some basic definitions and results concerning time scale. Further
general details can be found in [17]. 

Definition 2.1 [6] A time scale is arbitrary nonempty closed subset of the real set R with the 
topology and ordering inherited from R . 

Definition 2.2  [6]  Let Rt , we define the forward jump operator : T T  by 

( ) : inf{ T : }t s s t     for all Rt , 

while the backward jump operator : T T   by 

( ) : sup{ T : }t s s t      for all Rt . 

In this definition, we put inf sup T   (i.e., ( )M M   if T has a maximum M ) 

and sup inf T   (i.e., ( )m m   if T has a minimum m ), where  denotes the empty set. 

If ( )t t  , we say that t  is right-scatted, while ( )t t  we say that t  is left-scatted. Also, if 
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sup Tt  and ( )t t  , then t  is called right-dense, while if inf Tt   and ( )t t  , then t  is called 

left-dense. Points that are right-scattered and left-scattered at the same time are called isolated. 
Points that are right-dense and left-dense at the same time are called dense. If T  has a left-scattered 

maximum M , then we define T TK M  , otherwise T TK  . The graininess function 
: T [0, )    is defined by 

( ) : ( )t t t     for all Rt . 

Definition 2.3 [6] Assume : Tf R  is a function and let TKt .Then we define ( )f t  to be 

the number (provided if exists) with the property that given any 0  , there is a neighbourhood 

U of t  (i.e., ( , ) TU t t     for some 0  ) such that 

| ( ( )) ( ) ( ( ) ) | | ( ) |f t f s f t s t s       ,for all s U . 

We call the ( )f t  to be the delta (or Hilger) derivative of f  at t . 

Lemma 2.1 [6] Assume : Tf R  is function and let TKt . We have the following 

( )i     If f  is differentiable at t , then f  is  continuous at t .   

( )ii    If f  is continuous at t  and t  is  right-scattered,  then f  is continuous at t  with 

( ( )) ( )
( )

( )

f t f s
f t

t








. 

( )iii   If t  is right-dense, then f  is differentiable at t  if 
( ) ( )

lim
s t

f t f s

t s




 exists as a finite number.  

In this case,  
( ) ( )

( ) lim
s t

f t f s
f t

t s







. 

Lemma 2.2 [6] Assume , : Tf g R  is differentiable at TKt . Then 

( )i      For any constant a  and b , the sum : Taf bg R   is differentiable at t  with 

( ) ( ) ( ) ( )af bg t af t bg t    
. 

( )ii    If ( )f t  exists, then 

( ( )) ( ) ( ) ( )f t f t t f t   
. 

( )iii   The product : Tfg R  is differentiable at with 

( ) ( ) ( ) ( ) ( ( )) ( ) ( ) ( ) ( ) ( ( ))fg t f t g t f t g t f t g t f t g t        
. 

 Definition 2.4 [6] Assume : Tf R  is called rd-continuous provided it is continuous at right-

dense points in T  and its left-sided limits exist (finite) at left dense points in T . The set of rd-
continuous functions : Tf R  is denoted by 

rd rd rdC C (T) C (T, )R  . 

3. The analysis of synchronization on time scale 

In this section, we consider a nonlinear dynamic systems arbitrary time scale T . Described by 

 
( ) ( ( )) ( ) ( ),

( ) ( ( )) ( ) ( ),

x a t x t b t y t

y c t x t a t y t





  
   




  (3.1) 

and 

 1

2

( ) ( ( )) ( ) ( ) ( ),

( ) ( ( )) ( ) ( ) ( ),

X a t X t b t Y t t

Y c t X t a t Y t t

 

 

   
    




  (3.2) 

where ( ), b( )a t t  and ( )c t are real-valued rd-continuous functions on T  with the coefficient ( )a t  

satisfying the condition 
( ) : 1 ( ) ( ) 0.H t a t   

138



The system (3.1) represents the master system. The controllers 
1
( )t  and 

2
( )t  are added into the 

slave system,  given by the system (3.2). 
 To synchronization the master system (3.1) and the slave system (3.2), the errors systems are 

designed as follows 

 1 1 2 1

2 1 2 2

( ) ( ( )) ( ) ( ) ( ),

( ) ( ( )) ( ) ( ) ( ),

e a t e t b t e t t

e c t e t a t e t t

 

 

   
    




  (3.3) 

and 

lim | | 0,
it
e


 1,2i  , 

then the synchronization will happen. 
Our main result of this paper is as follows 
Theorem 3.1 Assume (H) and 0   hold , then for given synchronization systems (3.1) and 

(3.2) will occur by the control law as follows 

1 2

1 22

1

1 1
( )
2

1 1
(

2 2

,

,)

a
e b e

c
e a e




 


 

     
    

 

 where 
1 2

, , , , ,a b c e e   and 
21
,   are the function with respect to t . 

Proof   We take the Lyapunov function as 

 2 2

1 2

1
( )
2

V e e    (3.4) 

satisfies 

�

�
1 2

1 2

0, ( , ) (0,0),

0, ( , ) (0, 0).

V if e e

V if e e

  

  

 

Next,  applying the ( )iii  of  Lemma 2.2  we have 

 2 2

1 2 1 1 1 1 2 2 2 2

1 1
( ) ( ( ( )) ( ( )))
2 2

V e e e e e e t e e e e t            .  (3.5) 

Substituting the formula ( ( )) ( ) ( ) ( )f t f t t f t     into (3.3) and (3.5),  respectively,  we have 

 �

1 2 1
1

1 2 1
2 1 2 2

,

,
1

1

ae be
e

a
ae be

e c ce ae
a






 


    
        





  (3.6) 

and 

 
1 1 1 2 2 2

1 1
(2 ) (2 )

2 2
V e e e e e e         .  (3.7) 

Substituting 

1 2

1 22

1

1 1
( )
2

1 1
(

2 2

,

,)

a
e b e

c
e a e




 


 

     
    

 

into (3.6), then it yields 
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1 1 2

2 1 2

1 1

2
,

,
1 1

2

e e e

e e e

 

 

   
  





(3.8) 

then,  substituting (3.8) into (3.7),  since ( ) ( ) 0t t t     we obtain 

2 2

1 1

3
( ) 0

8
V e e


    . 

 According to the Lyapunov stability theory, the error systems asymptotically tends to zero. Thus, 
the proof is completely. 

 Theorem 3.2 Assume (H) and 0   hold , then for given synchronization systems (3.1) and 

(3.2) will occur by the control law as follows 

2

1 1 2

1 2

( 1)
2

( 1)
2

,

,

c b
a e e

c b
e a e





     
    

where 
1 2

, , , , ,a b c e e   and 
21
,   are the function with respect to t . 

Proof   When 0  , the formula turns into ( ( )) ( )f t f t   and system (3.3) is equivalent to 

1 1 2 1

2 1 2 2

( ) ( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ) ( ).

e a t e t b t e t t

e c t e t a t e t t





   
    




(3.9) 

Similarly  we also take the Lyapunov function as 

2 2

1 2

1
( )
2

V e e   (3.10) 

satisfies 

�
1 2

1 2

0, ( , ) (0,0),

0, ( , ) (0, 0).

V if e e

V if e e

  

  

Since the formula turns into ( ( )) ( )f t f t   for which we have 

1 1 2 2
V e e e e   

. (3.11) 

Substituting 

1 2

1 22

1

1 1
( )
2

1 1
(

2 2

,

,)

a
e b e

c
e a e




 


 

     
    

into (3.10), then it yields 

1 1 2

2 1 2

,
2

2
,

c b
e e e

c b
e e e

    
   





(3.12) 

then, 
2 2

1 2
( ) 0V e e   

. 

According to the Lyapunov stability theory, the error systems asymptotically tends to zero. Thus, 
the proof is completely. 
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In this paper, we have studied the synchronization on time scale and given two theorems to 
illustrate the phenomenon. Furthermore, corresponding examples are presented based on the results. 
Numerical simulations show their feasibility. From a theoretical perspective, such a synchronization 
strengthen the security of communication, which could be considered as a good method for 
designing a more secure communication scheme in practical engineering applications.   
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